
Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Fiche technique

CT-J (Chemin de câbles éclisse)

Exécution:	Sendzimir							
Produit	Numéro	Hauteur	Largeur	Longueur	Dim A	Fmax	Unité	Emballage
		(mm)	(mm)	(mm)	(mm)	(kN)		(unité)
CT110-J-PG	11555	110	0	0			ST	10
CT15-J-PG	10145	15	0	0			ST	10
CT35-J-PG	10146	35	0	0			ST	10
CT60-J-PG	10147	60	0	0			ST	10

Exécution:	Galvanisé a d	chaud						
Produit	Numéro	Hauteur (mm)	Largeur (mm)	Longueur (mm)	Dim A (mm)	Fmax (kN)	Unité	Emballage (unité)
CT110-J-DG	11556	110	0	0			ST	10
CT15-J-DG	10464	15	0	0			ST	10
CT35-J-DG	10465	35	0	0			ST	10
CT60-J-DG	10466	60	0	0			ST	10

Exécution:	Poudrage							
Produit	Numéro	Hauteur (mm)	Largeur (mm)	Longueur (mm)	Dim A (mm)	Fmax (kN)	Unité	Emballage (unité)
CT110-J-CO	11557	110	0	0			ST	10
CT15-J-CO	10792	15	0	0			ST	10
CT35-J-CO	10793	35	0	0			ST	10
CT60-J-CO	10794	60	0	0			ST	10

Instruction de montage:

-

Charge pratique:

Standard: -

Charge max:

Diagramme de charge:

Information supplémentaire:

P. 1 / 4 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Couplage avec: BN06-10

Liaison équipotentielle: IEC61537

Déclaration de conformité EC: EC directive 2014/35/EU (Low voltage) as modified by directive 93/68/EEC (CE marking)

PG

Galvanisé Sendzimir (EN 10143) PG (pre-galvanised)

La galvanisation Sendzimir est une galvanisation par trempe en continu, sans traitement préliminaire au moyen de décapants ou de fondants. La galvanisation Sendzimir est caractérisée par des propriétés d'adhérence particulièrement bonnes et par une résistance élevée à la corrosion. La caractéristique de cet acier est qu'il est pourvu d'une couche de zinc par un procédé continu d'immersion à chaud "avant" sa déformation mécanique. Cette couche de zinc est aisément déformable, et exerce sur les faces de coupe, jusqu'à 1,5 mm de profondeur, une action cathodique qui combat l'oxydation. L'acier est d'abord soumis à un nettoyage chimique et sa surface est rendue rugueuse afin de présenter une bonne adhérence; après la phase d'immersion, l'excès de zinc est éliminé par des lames d'air et l'acier acquiert une couche de passivation (très fine couche protectrice) qui empêche l'oxydation de la couche de zinc (rouille blanche).

L'épaisseur de la couche est généralement exprimée en g/m. L'acier Sendzimir le plus utilisé est le Z 275 = 275g/m² (pesé sur les deux faces), soit 18-20 µm (microns). L'acier galvanisé Sendzimir produit dans les lignes de galvanisation modernes présente généra-lement un aspect brillant uniforme. Le fleurage de la surface, qui était fréquent auparavant, a pratiquement disparu actuellement. Cet effet est obtenu par l'influence du plomb, mais il n'a aucune conséquence sur la qualité de la couche de zinc. L'utilisation de plomb est désormais interdite par les législations de plus en plus sévères en matière de protection de l'environnement.

DG

Galvanisé à chaud (EN ISO 1461) DG (dipped-galvanised)

Des systèmes de chemins de câbles susceptibles d'être exposés à des conditions atmosphériques et/ou à des substances agres-sives (par exemple dans des applications pétrochimiques) subissent un traitement supplémentaire sous la forme d'une galvani-sation à chaud. La galvanisation à chaud est également désignée par zingage à la pièce, zingage en bain fondu, galvanisation au trempé ou galvanisation par immersion à chaud. La galvanisation à chaud est un processus métallurgique dont le but est de protéger l'acier contre la corrosion. Si cette couche est rompue, le zinc fait alors office d'anode sacrificielle, de telle manière que le fer soit protégé par le zinc (effet connu également sous le nom de protection cathodique). Lors de la galvanisation, il se forme trois alliages: un premier: fer-zinc, un deuxième: zinc-fer et un troisième: zinc. Pour obtenir une bonne adhérence, le prétraitement de l'acier est extrêmement important, avec les étapes de dégraissage, rinçage, décapage, rinçage, fluxage, séchage et immersion. L'épaisseur de la couche dépend de la composition de l'acier, de l'épaisseur du matériau et de la durée d'immersion dans le bain de zinc. Dans la norme relative à la galvanisation NEN-EN-ISO 1461, on précise les épais-seurs de couche minimales (comme mentionné ci-dessous), ainsi que la perte de zinc par année, qui dépend des facteurs environnementaux.

La couche de zinc forme en outre une excellente couche d'accrochage pour d'autres revêtements tels que le revêtement par poudrage et des couches de peinture (mieux connu sous le nom de système duplex). Un avantage supplémentaire de la galvanisation à chaud est le fait que, le long des bords et aux points où des objets sont en général très sensibles à la corrosion, la couche de zinc est plus épaisse en raison du comportement du liquide.

Epaisseurs de couche de zinc minimales selon ISO 1461:

- Avec le procédé à la centrifugation

Epaisseur du matériau \geq 6 mm épaisseur min. de la couche de zinc (moyenne) 85µm Epaisseur du matériau 3 mm - 6 mm épaisseur min. de la couche de zinc (moyenne) 70µm Epaisseur du matériau 1,5 mm - 3 mm épaisseur min. de la couche de zinc (moyenne) 55µm Epaisseur du matériau < 1,5 mm épaisseur min. de la couche de zinc (moyenne) 45µm

- Avec le procédé au tambour (petites pièces)

Epaisseur du matériau ≥ 3 mm épaisseur min. de la couche de zinc (moyenne) 55μm Epaisseur du matériau < 3 mm épaisseur min. de la couche de zinc (moyenne) 45μm

co

P. 2 / 4 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Revêtement de poudre de polyester CO (coated)

Le revêtement de polyester sera utilisé dans des environnements moyens où l'aspect esthétique doit s'allier à la durabilité.

La caractéristique du revêtement de polyester est sa résistance à la décoloration par la lumière solaire.

Si son utilisation est requise dans des environnements plus agressifs, il est recommandé de travailler avec un revêtement d'époxy, qui est moins poreux et qui résiste donc mieux aux produits chimiques. L'inconvénient de la résine époxy est qu'elle change rapidement de coloration.

Si l'on veut bénéficier des deux avantages, on peut utiliser une couche de fond en époxy et une couche de finition en polyester. Comme pour toutes les techniques de surface précitées, une bonne préparation est ici également cruciale. Selon le matériau de base, il faudra dégraisser, rincer, décaper, rincer, appliquer une couche de conversion (p. ex. du chrome), rincer, rincer à l'eau déminéralisée, sécher.

Application selon la résistance contre la corrosion:

Classes de corrosion selon EN ISO 12994

Classe de	Orrosion selon EN ISC	1		I
corrosion	Atmosphérique	Environnement intérieur	Air libre	Traitement de surface
C1	<0,1μm	Locaux chauffés avec atmosphère sèche: bureaux, écoles, magasins et hôtels.		Galvanisation électrolytique selon EN ISO 2081
C2	0,1 - 0,7μm	Bâtiments non chauffés avec température et humidité de l'air variables: halls de sports, entrepôts, magasins.	Environnement rural où une faible pollution est possible.	Galvanisation Sendzimir selon EN 10327 – EN 10143
С3	0,7 - 2μm	Locaux avec faible pollution de l'air et humidité de l'air modérée à cause de processus industriels: halles de production.	Environnements avec industrie légère et pollution de l'air modérée. Zones avec légères influences maritimes et zones résidentielles.	Galvanisation à chaud (Hot-dip) selon EN ISO 1461
C4	2 - 4μm	Locaux avec forte pollution de l'air et humidité de l'air élevée à cause de processus industriels: industrie chimique, piscines, chantiers navals.	Zones industrielles et environnement maritime avec teneur en sel modérée.	Galvanisation à chaud (Hot-dip) selon EN ISO 1461 Poudrage selon EN ISO 12944
C5-I	4 - 8μm	Bâtiments avec condensation permanente et forte pollution de l'air.	Zones industrielles avec atmosphère agressive et humidité de l'air élevée.	Duplex (Galvanisation à chaud + poudrage) Acier inoxydable AISI 316L
C5-M	4 - 8μm	Environnement maritime et offshore avec taux d'humidité élevé et haute teneur en sel.	Zones industrielles avec atmosphère agressive et humidité de l'air élevée.	Duplex (Galvanisation à chaud + poudrage)

P. 3 / 4 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Classification pour la résistance contre la corrosion selon IEC61537

Classe	Référence – Matériau et finition						
0(a)	Aucun						
1	Revêtement électrolytique d'épaisseur minimale 5 µm						
2	Revêtement électrolytique d'épaisseur minimale 12 μm						
3	Prégalvanisé avec grade 275 de la EN 10327 et de la EN 10326						
4	Prégalvanisé avec grade 350 de la EN 10327 et de la EN 10326						
5	Postgalvanisé avec un revêtement de zinc d'épaisseur moyenne (minimale) 45 µm selon l'ISO 1461 pour l'épaisseur de zinc uniquement						
6	Postgalvanisé avec un revêtement de zinc d'épaisseur moyenne (minimale) 55 µm selon l'ISO 1461 pour l'épaisseur de zinc uniquement						
7	Postgalvanisé avec un revêtement de zinc d'épaisseur moyenne (minimale) 70 µm selon l'ISO 1461 pour l'épaisseur de zinc uniquement						
8	Postgalvanisé avec un revêtement de zinc d'épaisseur moyenne (minimale) 85 µm selon l'ISO 1461 pour l'épaisseur de zinc uniquement (communément acier à forte teneur en silicone)						
9A	Acier inoxydable fabriqué pour ASTM: A 240/A 240M – 95a désignation S30400 ou grade 1-4301 de la EN 10088 sans traitement postérieur (b)						
9B	Acier inoxydable fabriqué pour ASTM: A 240/A 240M – 95a désignation S31603 ou grade 1-4404 de la EN 10088 sans traitement postérieur (b)						
9C	Acier inoxydable fabriqué pour ASTM: A 240/A 240M – 95a désignation S30400 ou grade 1-4301 de la EN 10088 avec traitement postérieur (b)						
9D	Acier inoxydable fabriqué pour ASTM: A 240/A 240M – 95a désignation S31603 ou grade 1-4404 de la EN 10088 avec traitement postérieur (b)						

(a) Pour les matériaux ne possédant pas de classification déclarée pour la résistance contre la corrosion.
 (b) Le procédé de traitement postérieur est employé pour améliorer la protection contre la corrosion due à la présence de craquelures et contre la contamination par d'autres aciers.

P. 4 / 4 Rev01: 05/10/2017